A Pointwise Inequality for the Fourth Order Lane-emden Equation
نویسندگان
چکیده
We prove that the following pointwise inequality holds −∆u ≥ √ 2 (p + 1)− cn |x| a 2 u p+1 2 + 2 n− 4 |∇u|2 u in R where cn := 8 n(n−4) , for positive bounded solutions of the fourth order Hénon equation that is ∆u = |x|u in R where a ≥ 0 and p > 1. Motivated by the Moser iteration argument in the regularity theory, we develop an iteration argument to prove the above pointwise inequality. As far as we know this is the first time that such an argument is applied toward constructing pointwise inequalities for partial differential equations. An interesting point is that the the coefficient 2 n−4 also appears in the fourth order Q-curvature and the Paneitz operator. This in particular implies that the scalar curvature of the conformal metric with conformal factor u 4 n−4 is positive.
منابع مشابه
Numerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method
In this paper, numerical solution of general Lane-Emden equation via collocation method based on Double Exponential DE transformation is considered. The method converts equation to the nonlinear Volterra integral equation. Numerical examples show the accuracy of the method. Also, some remarks with respect to run-time, computational cost and implementation are discussed.
متن کاملA Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملMODIFICATION OF THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR LANE-EMDEN TYPE EQUATIONS
In this paper, modication of the optimal homotopy asymptotic method (MOHAM) is appliedupon singular initial value Lane-Emden type equations and results are compared with the available exactsolutions. The modied algorithm give the exact solution for dierential equations by using one iterationonly.
متن کاملApplication of the exact operational matrices for solving the Emden-Fowler equations, arising in Astrophysics
The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential equations did not have high-degree nonlinearity and the reported results could not strongly show the...
متن کامل